skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yi-Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A major aim of gravitational wave astronomy is to test observationally the Kerr nature of black holes. The strongest such test, with minimal additional assumptions, is provided by observations of multiple ringdown modes, also known as black hole spectroscopy. For the gravitational wave merger event GW190521, we have previously claimed the detection of two ringdown modes emitted by the remnant black hole. In this paper we provide further evidence for the detection of multiple ringdown modes from this event. We analyse the recovery of simulated gravitational wave signals designed to replicate the ringdown properties of GW190521. We quantify how often our detection statistic reports strong evidence for a sub-dominant ( , m , n ) = ( 3 , 3 , 0 ) ringdown mode, even when no such mode is present in the simulated signal. We find this only occurs with a probability ∼0.02, which is consistent with a Bayes factor of 56 ± 1 (1σuncertainty) found for GW190521. We also quantify our agnostic analysis of GW190521, in which no relationship is assumed between ringdown modes, and find that only 1 in 250 simulated signals without a ( 3 , 3 , 0 ) mode yields a result as significant as GW190521. Conversely, we verify that when simulated signals do have an observable ( 3 , 3 , 0 ) mode they consistently yield a strong evidence and significant agnostic results. We also find that constraints on deviations from the ( 3 , 3 , 0 ) mode on GW190521-like signals with a ( 3 , 3 , 0 ) mode are consistent with what was obtained from our previous analysis of GW190521. Our results support our previous conclusion that the gravitational wave signal from GW190521 contains an observable sub-dominant ( , m , n ) = ( 3 , 3 , 0 ) mode. 
    more » « less
  2. ABSTRACT Searches for gravitational waves from compact binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are consistent with the mass of neutron stars (1–2 M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the Galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact binaries. To determine whether there is evidence for any such sources, we use pycbc to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries. 
    more » « less